Sign in to follow this  
Followers 0
vladyan

Трещина

290 posts in this topic

Pinned posts

построил модель, добавил туда полуэллиптическую трещину, посчитал КИН и J-интеграл, как мне понять теперь, будет трещина расти или нет?

Share this post


Link to post
Share on other sites


UnPinned posts
13 часа назад, vladyan сказал:

построил модель, добавил туда полуэллиптическую трещину, посчитал КИН и J-интеграл, как мне понять теперь, будет трещина расти или нет?

У Вас задача только определить, будет ли расти трещина? Т.е. распространение трещины не моделируете? 

 

У вас хрупкий материал? Какой тип нагружения: mode I, II или III? Или смешанный? Какие параметры трещиностойкости известны для материала?

 

Если пластическая зона в районе кончика трещины мала по сравнению с размерами трещины , то достаточно будет использовать критерии линейной упругой механики разрушения (ЛУМР). Самый простой вариант, если у вас такой случай, сравнить КИНы с предельными значениями. Если пластическая зона существенна, но локализована, используйте значение J интеграла и сравнивайте с критическим значением высвобождения энергии.

 

Чтобы не продолжать гадание на кофейной гуще, лучше сформулировать задачу чётко, дать все исходные данные, скинуть хотя бы картинку модели и результат расчета. В идеале, вообще файл проекта. 

 

Я по умолчанию предполагаю, что вы понимаете механику разрушения и знаете специфику и некоторые нюансы. Если нет, лучше что-нибудь почитать. 

4 people like this

Share this post


Link to post
Share on other sites

@Orchestra2603 , спасибо за отзыва. Задача у меня такая, есть такая деталь, закреплена сверху и снизу, внутри давление. Задаю полуэллиптическую трещину. И мне нужно найти допустимые размеры трещины, при которых она не будет развиваться. Я получил значения КИН. Как я понял, нужно найти или посчитать предельно допустимый. Но у меня значения отрицательные, так и должно быть?

111.PNG

111.PNG

111.PNG

Share this post


Link to post
Share on other sites
24 минуты назад, vladyan сказал:

Но у меня значения отрицательные, так и должно быть?

а поверните трещину на 90 градусов. какие тогда?

В 18.03.2011 в 14:50, Борман сказал:

Ито Ю., Мураками Ю., Хасебэ Н., Юуки Р., Тоя М., Того К., Мията X., Терада X., Миядзаки Н., Аоки С. - Справочник по коэффициентам интенсивности напряжений в 2-х томах.

 

Share this post


Link to post
Share on other sites

ID: 5   Posted (edited)

4 часа назад, vladyan сказал:

@Orchestra2603 , спасибо за отзыва. Задача у меня такая, есть такая деталь, закреплена сверху и снизу, внутри давление. Задаю полуэллиптическую трещину. И мне нужно найти допустимые размеры трещины, при которых она не будет развиваться. Я получил значения КИН. Как я понял, нужно найти или посчитать предельно допустимый. Но у меня значения отрицательные, так и должно быть?

Есть три таких канонических типа разрушения. Для кажого из них своя история и у каждого свой КИН: K_I, K_II, K_III. Вы смотрите значение K_I. Т.е для первого типа разрушения как для трещины нормального отрыва. Это число, если совсем грубо и на пальцах, описывает, как сильно стремятся к бесконенчости напряжения вблизи трещины, вызванные нагружением, пытающимся "раскрыть" трещину по нормали к ее плоскости. Если вы посмотрите поля разных напряжений, то должны увидеть, что таких напряжений нет для вашей трещины и ваших граничных условий. Более того, есть напряжения, которые наоборот стремятся "закрыть" трещину. Поэтому первый КИН и отрицательный. Мораль: при такой трещине и ГУ, ваша трещина никогда не будет расти по первому типу вне зависимости от трещиностойкости материала... Насколько это физично, судитие сами. Здесь я согласен с @soklakov . Трещина у вас странно расположена. Она так и должна быть в реальности?

Edited by Orchestra2603
1 person likes this

Share this post


Link to post
Share on other sites

@soklakov @Orchestra2603 , это маленькая модель для понимания. Да, трещина странная, просто в реальном образце бывают трещины на внутренней стороне(со стороны давления) и я что-то не понял как такую задать.

Share this post


Link to post
Share on other sites
13 часа назад, Orchestra2603 сказал:

Трещина у вас странно расположена.

Задача странная, а трещина нет. Типичный случай - продольная трещина в кольцевом сварном стыке. Развивается под действием продольных напряжений в трубе.

Стык на вырезку... по абсолютным противопоказаниям, так сказать.

Share this post


Link to post
Share on other sites
3 минуты назад, Борман сказал:

Типичный случай - продольная трещина в кольцевом сварном стыке. Развивается под действием продольных напряжений в трубе.

@vladyan заделку оставьте, давление уберите. а на противоположный заделке торец - изгибающий момент подайте. будет веселее.

Share this post


Link to post
Share on other sites

@Борман ну вот допустим есть труба, по которой течет вода с каким-то известным давлением, я получил НДС и хочу добавить трещину, как это сделать правильно?

Share this post


Link to post
Share on other sites
2 часа назад, vladyan сказал:

ну вот допустим есть труба, по которой течет вода с каким-то известным давлением, я получил НДС и хочу добавить трещину, как это сделать правильно?

Не знаю, как правильно, скажу так, как это делаю я.

Сначала моделирую трубопроводную систему, определяю номинальное НДС без всяких там трещин.

Потом для конкретной трещины определяю нужные параметры, один из которых КИН. На этом этапе используются справочники, или ведомственная нормативка.

Потом оценка работоспособности по двух-параметрическому критерию.. типа такого, но другого

.

image196.jpg

 

Для требуемого нормативного запаса (у меня в светофоре запасы 1,5 и 1,75) строю эти хитрые поверхности и смотрю, куда трещина легла.

 

Возможно, вся эта кухня и покрывается прямым моделированием трещины...но я так не делаю.. а то еще отрицательный КИН получу, и чеши репу после этого. 

Share this post


Link to post
Share on other sites

ID: 11   Posted (edited)

5 часов назад, vladyan сказал:

@Борман ну вот допустим есть труба, по которой течет вода с каким-то известным давлением, я получил НДС и хочу добавить трещину, как это сделать правильно?

я кое-что тоже скажу, если позволите...

 

то, что вы хотите сделать, вообще делается чистой аналитикой... напряжения получаются по котельным формулам, КИНы вычисляются по формулам. Для сценария с хрупким разрушеним сравнивается КИН с K_Ic, для сценария с вязким разрушением, например, по Мизесу через главные напряжения эквивалентные напряжения сравниваются с пределом текучести.. Выбирается наиболее консервативная оценка.

 

Я правильно понимаю, что вы просто пока пытаетесь освоить моделирование трещин? и в реальности вероятно у вас задачи не такие..?

Если хотите поиграться и добавить драмматизма вашей трещине, то дайте осевую растягивающую нагрузку (как вариант, как@soklakov писал выше) вместо хотя бы одной из заделок. Сейчас трещина себя слишком вольготно чувствует, так как ей ничего не угрожает в принципе.

 

Edited by Orchestra2603

Share this post


Link to post
Share on other sites
1 час назад, Orchestra2603 сказал:

трещина себя слишком вольготно чувствует, так как ей ничего не угрожает в принципе.

 

Ну уж прям принципе. В принципе то как раз угрожает. Вот же написано..

 

В 27.12.2019 в 16:24, vladyan сказал:

закреплена сверху и снизу, внутри давление

 

Попробуйте прикинуть знак осевых напряжений :)

 

 

Share this post


Link to post
Share on other sites
3 часа назад, Борман сказал:

 

Ну уж прям принципе. В принципе то как раз угрожает. Вот же написано..

 

 

Попробуйте прикинуть знак осевых напряжений :)

 

 

Ну, фиг знает.. Смотрю я на картинку.. Вижу кольцо с давлением на внутренней поверхности. Вижу заделку на верхней и предположительно также нижней грани. Вижу трещину с фронтом в плоскости, перпендикулярной к оси кольца. Вижу отрицательный КИН. Но вот видения с растягивающими осевыми напряжениями никак меня не посещают :)

Share this post


Link to post
Share on other sites
11 час назад, Orchestra2603 сказал:

Но вот видения с растягивающими осевыми напряжениями никак меня не посещают :)

Просто чувак решил сэкономить и вместо трубы взял кольцо. Закрепите трубу по торцам и приложите давление.

 

Share this post


Link to post
Share on other sites

@Борман @Orchestra2603 @soklakov спасибо вам большое за помощь, у меня остался только вопрос про сварное соединение. Его как задать? Как другое тело с другими прочностными характеристиками, или же можно иначе?

1 person likes this

Share this post


Link to post
Share on other sites

@soklakov

ну во скажи, откуда в людях берутся такие дикие идеи ? Еще пять лет назад такого не было, а сейчас что ? Ансис головного мозга чтоль ?

Share this post


Link to post
Share on other sites
1 минуту назад, Борман сказал:

ну во скажи, откуда в людях берутся такие дикие идеи ?

в этом году мы сдали проект по выращиванию трещины в поле ОСН в многопроходном сварном шве. и мы ведь не сами это придумали, нас просто попросили сделать это.

2 минуты назад, Борман сказал:

Еще пять лет назад такого не было, а сейчас что ?

и хотя тоже самое можно было сделать пять лет назад, сделано это было только теперь... почему?... не все взаимосвязи мне видны. можно свалить на случайность?

3 минуты назад, Борман сказал:

Ансис головного мозга чтоль ?

безусловно, да.

Share this post


Link to post
Share on other sites
18 минут назад, soklakov сказал:

не все взаимосвязи мне видны. можно свалить на случайность?

 

Не. Сиса все больше превращается из лопаты проектировщика в кайло разработчика НИР. Это не вина сисы.. нельзя же винить молоток. Это вина пользователся.. в том, что он, УМЕЯ БОЛЬШЕ, ЧЕМ ПОНИМАЕТ, ДЕЛАЕТ ВИД, ЧТО ПОНИМАЕТ, ТО ЧТО ДЕЛАЕТ. 

1 person likes this

Share this post


Link to post
Share on other sites

ID: 19   Posted (edited)

9 часов назад, Борман сказал:

Просто чувак решил сэкономить и вместо трубы взял кольцо. Закрепите трубу по торцам и приложите давление.

 

Бездушный вы человек :).. мне бы шампанское и оливье, а не трубы с торцами... ну, да, ладно..

 

Вот труба.. Длина 500мм, внутренний диаметр 50мм, толщина 10мм.. Модель, осевые напряжения в изометрии и в продольном сечении..Да, везде в сечении есть положительные напряжения

 

PipeLong3D_FEM.thumb.jpg.b175f3c94aedb55c3b629fbc2d3ff24d.jpg

PipeLong3D.thumb.jpg.c836392ed2e881e5ff36c8429721b355.jpg

PipeLongSection.thumb.jpg.8879e3858bbae6dbc2e9bac0130233be.jpg

 

А вот эта же труба, но уже длиной 10 мм...и тут я действительно вижу, что зона с растягивающими напряжениями где-то там далеко..

RingShort3D_FEM.thumb.jpg.90e8d1eefaecc81c099e1b6a68861f8b.jpgRingShort3D.thumb.jpg.392370c08242ea75e4fb76833e5efd03.jpgRingSection.thumb.jpg.4129e83e50b04be5c1250cf80fe609a1.jpg

 

и у ТС как раз трещина, как мне показалаось, туда не заходит.. вот и неудивительно, что КИН отрицательный. Чудес, как известно, не бывает.  

 

Так что, по моему скромному мнению, если интересует труба, то, наверное, лучше все же моделировать трубу, а не кольцо. 

 

 

Edited by Orchestra2603
1 person likes this

Share this post


Link to post
Share on other sites
2 минуты назад, Orchestra2603 сказал:

лучше все же моделировать трубу, а не кольцо

И уж тем более не сварной шов... чувак решил смоделировать именно его. Пусть моделирует. Ему предстоит учесть остаточные сварочные..

 

4 минуты назад, Orchestra2603 сказал:

бездушный вы человек.. мне бы шампанское и оливье, а не трубы с торцами... ну, да, ладно..

Помилуйте.. Это же вы себе решили что-то доказать..а не мне :)

Что я в этой трубе не видел. :bad:

Share this post


Link to post
Share on other sites
В 29.12.2019 в 19:34, Orchestra2603 сказал:

А вот эта же труба, но уже длиной 10 мм...и тут я действительно вижу, что зона с растягивающими напряжениями где-то там далеко..

Сен-Венан не одобряет. если уж рассматриыать кусочек трубы, то на торцах - скользящая заделка.

всех с наступающим!

Share this post


Link to post
Share on other sites
1 час назад, soklakov сказал:

Сен-Венан не одобряет. если уж рассматриыать кусочек трубы, то на торцах - скользящая заделка.

всех с наступающим!

Как говорится, не только лишь все, Сен-Венан и иже с ними - мало кто одобряет :)

 

Час моего праздничного времени был специально убит, чтобы поцокать языком, погрозить пальчиком и сказать "ай-я-яй, нельзя трубу считать как у ТС кольцо, ибо НДС совсем другое :)" 

 

И Вас, Саш, с наступающим ;) 

1 person likes this

Share this post


Link to post
Share on other sites
В 27.12.2019 в 09:47, Orchestra2603 сказал:

Если пластическая зона в районе кончика трещины мала по сравнению с размерами трещины , то достаточно будет использовать критерии линейной упругой механики разрушения (ЛУМР). Самый простой вариант, если у вас такой случай, сравнить КИНы с предельными значениями. Если пластическая зона существенна, но локализована, используйте значение J интеграла и сравнивайте с критическим значением высвобождения энергии.

в книжке Морозова увидел как КИН подсчитывается с помощью J-интеграла..-kKxCL-hcO4.thumb.jpg.0c9f84cbd81de93dccc0b477c5f32f47.jpg

получается в лин мех разрушения J-интеграл может быть использован для подсчёта критерия, а в нелинейной он сам критерий.

Америку небось открываю..))

Share this post


Link to post
Share on other sites
19 часов назад, Jesse сказал:

в книжке Морозова увидел как КИН подсчитывается с помощью J-интеграла..

 

получается в лин мех разрушения J-интеграл может быть использован для подсчёта критерия, а в нелинейной он сам критерий.

Основной базовый критерий, как я понимаю, для всех случаев связан с интенсивность высвобождения энергии, G. Т.е. G = Gc - это, так сказать отправная точка.

Для линейно-упругих материалов, где рост трещины предполагается по какому-то одному типу, получается, что G пропорционален квадрату КИНа. Тогда вполне законно можно сказать, что существует какое-то критическое значение КИНа, K_Ic (например, для первого типа), равное кв. корню из E'*Gc, и ввести критерий K_I= K_Ic

 

Если материал нелинейный, то квадрат КИНа, деленный на E', уже не определяет никакого выделения энергии, и критерий теряет свою силу, строго говоря. Райс и Черепанов нашли, что для степенной зависимости напряжений от деформаций и при некоторых допущениях вот такой контурный интеграл даёт J = G. Отсюда есть критерий J = Gc. 

20 часов назад, Jesse сказал:

 

Америку небось открываю..))

Не важно! Респект за желание разобраться и стремление к новым знаниям :) 

1 person likes this

Share this post


Link to post
Share on other sites
В 04.01.2020 в 18:04, Orchestra2603 сказал:

что для степенной зависимости напряжений от деформаций и при некоторых допущениях

подобное в теории пластичности всплывало вроде..) критерии простого нагружения/теорема Ильюшина чё т такое..
здесь оно тоже фигурирует?)

Share this post


Link to post
Share on other sites

@Jesse , айда по многословней. копать так копать. полными, распространнеными предложениями, приправленными причастными оборотами, где-то даже сложно-подчиненными или -сочиненными, но с глубоким смыслом вопроса, в котором половина ответа.

Share this post


Link to post
Share on other sites

ID: 27   Posted (edited)

@soklakov не то
5e1732433ec8c_C44026D5-1853-4D8B-9F00-E203862C9578.png.thumb.jpg.7f76bee9fcd8285f78bf0264de6e4b2f.jpg

https://books.google.ru/books?id=zfx3CwAAQBAJ&pg=PA201&lpg=PA201&dq=j-интеграл+простое+нагружение&source=bl&ots=FUKZoEINmC&sig=ACfU3U2METbjsZFI3w2AT2I1Ga5lZ5k73A&hl=ru&sa=X&ved=2ahUKEwjTlb-f0PbmAhU0i8MKHS9xDeUQ6AEwAXoECAsQAQ#v=onepage&q=j-интеграл простое нагружение&f=false

вот простое нагружение в теории пластичности
11111.jpg.3a2c2e29e6b7dbe5af16613e7c732218.jpg
это является следствием пропорционального возрастания внешних нагрузок вроде так

Edited by Jesse

Share this post


Link to post
Share on other sites

ID: 28   Posted (edited)

Пункт второй о несжимаемости противоречит здравому физическому смыслу. Скорость звука будет бесконечной ... :)

Edited by Fedor

Share this post


Link to post
Share on other sites

ID: 29   Posted (edited)

@soklakov помнится мы постулат Друкера ещё обсуждали до НГ.. я и там капнул..:smile:

так вот, я писал что постулат Друкера - это dg*de>0, что эквивалентно ниспадающей диаграмме растяжения g-e. Но это всего лишь частный случай для простого растяжения, где только один компонент напр и деф
Вы же писали что постулат Друкера суть выпуклость поверхности нагружения. Но это есть следствие..)

Вот настоящий постулат Друкера
33333333333333333.jpg.5036ff5e333da420c75ab76d2f3425d4.jpg

5555555555555555555555.jpg.29a62b75b49324931fc69cb3d817a948.jpg
он формулируется как критерий через неравенство нулю интеграла по замкн. контуру, >0 (вообще интеграл по замкн контуру крутая вещь: и в J-интеграл входит в мех разр, и  много других критериев в физике и математике описывает  вообще, типа развёртывание поверхностей, нер-во Клазиуса в термодинамике, потенциальность силового поля и т.д.)
Вот то что говорили вы..)
22222222222222.jpg.2ebc76728931987215c8aaf9b53f40dc.jpg

получается мы оба были чуть не совсем правы...
вот ещё тут можно глянуть
https://studopedia.su/6_43798_postulat-drukera.html

20 минут назад, Fedor сказал:

Пункт второй о несжимаемости противоречит здравому физическому смыслу. Скорость звука будет бесконечной ... :)

пусть и так. Нам какое дело до скорости звука и упругих деформаций. Тут теория пластичности!)

Edited by Jesse
1 person likes this

Share this post


Link to post
Share on other sites

ID: 30   Posted (edited)

3 часа назад, Jesse сказал:

подобное в теории пластичности всплывало вроде..) критерии простого нагружения/теорема Ильюшина чё т такое..
здесь оно тоже фигурирует?)

По поводу J интеграла и HRR-сингулярности. На самом деле, если читать первоисточники, то я выше неправильно написал. Оказывается, Rice, 1968 писал, что J интеграл определяет приращение в энергии деформации при приращении в длине трещины (т.е. то самое G в понимании Гриффитса) вообще для любых материалов. Но вот как параметр, определяющий "интесивность сингулярности" для, скажем, поля напряжений, в Rice & Rosengren, 1968 показано только для класса материалов с пластичностью по Мизесу и деформационным упрочнением, по типу, как у вас в книжке... Не уверен, что это то же, что и по Ильюшину ))

Edited by Orchestra2603
1 person likes this

Share this post


Link to post
Share on other sites
Цитата

Нам какое дело до скорости звука и упругих деформаций. Тут теория пластичности!

Разгрузка то и при пластичности упругая. То есть упругие деформации всегда есть и при пластичности ... 

Share this post


Link to post
Share on other sites
2 минуты назад, Fedor сказал:

Разгрузка то и при пластичности упругая. То есть упругие деформации всегда есть и при пластичности ... 

это то да.. но в теории пластичности часто постулируется несжимаемость
вы по этой формуле из Википедии смотрели?)
5e17667d8220d_2020-01-09204348.png.4e4f1a195c78e0b605d94d266c92d33b.png
возможно опять-таки на это просто закрывают глаза.. в каких расчётах исп-ся скорость звука?) да ни в каких!
возможно ещё следующее:  при v=0,5 материал несжимаем, но обратное утверждение не всегда верно... 
ну и самый веский быть может довод - коэф Пуассона это ж всё-таки упругая постоянная...:smile:

Share this post


Link to post
Share on other sites

Глаза то на многое можно закрыть, но пропадет шаровая часть, останется только девиаторная. И при растяжении , например проволочки,  не сможете добиться равновесия... 

Share this post


Link to post
Share on other sites
Цитата

критерии простого нагружения/теорема Ильюшина 

Насколько помню, это о том, что деформационная теория пластичности совпадает с теорией пластического течения при простом нагружении. То есть когда нагружение зависит от одного параметра. А деформационная теория пластичности, в свою очередь, можно свести к нелинейной теории упругости :) 

1 person likes this

Share this post


Link to post
Share on other sites
1 час назад, Fedor сказал:

Глаза то на многое можно закрыть, но пропадет шаровая часть, останется только девиаторная. И при растяжении , например проволочки,  не сможете добиться равновесия... 

уже башка не варит, но чуйка подсказывает что это было б проблемой в теории упругости. У нас опять таки теория пластичности с законами упрочнения.
мне кажется вы чересчур переоцениваете коэф Пуассона. Если абстрагироваться от закона Гука, то коэф ПУассона - всего лишь критерий подобия, который позволяет лишь качественно "оценить ситуацию". (точно так же как число Рейнольдса в гидродинамике)
Хочу сказать, что делать какие-то серьёзные выкладки и умозаключения только отсылаясь на значение коэф Пуассона не совсем правильно имхо..

Share this post


Link to post
Share on other sites

Равновесие то нужно вообще в механике. 

Цитата

 коэф ПУассона - всего лишь критерий подобия, который позволяет лишь качественно "оценить ситуацию". (точно так же как число Рейнольдса в гидродинамике)

Смелое утверждение с которым трудно согласиться :) 

http://scask.ru/c_book_brg.php?id=80   

1 person likes this

Share this post


Link to post
Share on other sites
19 минут назад, Fedor сказал:

Равновесие то нужно вообще в механике. 

На этом форуме один специалист) умеет решать задачу с нагрузкой - перемещения.

И никакого равновесия у него нет. Он утверждает что никаких сил при этом нет.))

 

 

И даже задачи динамики этот специалист умеет решать с нагрузкой - перемещения.

Силы инерции есть, а никаких других сил нет. )

Share this post


Link to post
Share on other sites
Цитата

На этом форуме один специалист) умеет решать задачу с нагрузкой - перемещения

Какой один ?  Таких тут сотни если не тысячи. Задача Дирихле для механики деформируемого тела ...  Дело обыкновенное давным-давно :)  

Share this post


Link to post
Share on other sites
12 часа назад, Jesse сказал:

коэф ПУассона - всего лишь критерий подобия, который позволяет лишь качественно "оценить ситуацию". (точно так же как число Рейнольдса в гидродинамике)

коэффициент Пуассона - характеристика среды. как вязкость или плотность. не критерий подобия!

1 person likes this

Share this post


Link to post
Share on other sites
14 часа назад, Jesse сказал:

ну и самый веский быть может довод - коэф Пуассона это ж всё-таки упругая постоянная...

довод за что? теряется нить рассуждений.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0

  • Recently Browsing   0 members

    No registered users viewing this page.



  • Сообщения

    • Jesse
        после этого "вступления" не особо было желание дочитывать... для справки:
      "улететь в космос" можно хоть со скоростью 1 км/ч, а вот чтобы объект стал искусственным спутником Земли или мог покинуть поле тяготения Земли и Солнца с выключенными двигателями - тогда да, нужна приличная скорость несколько км/с. Ну чем дальше тем меньше..
      Насчёт Шаттлов: если не изменяет память, самое дорогое в "ремонте" была замена покрытия, которые представляли собой плиточки из жаростойкого материала, коих было десятки тысяч. Они разрушались / портились, когда Шаттл входил на большой скорости в плотные слои атмосферы.
      У ракет SpaceX такой проблемы нет, т.к. основная "возвращаемая" ступень отсоединяется чуть выше стратосферы 70-80 км. То бишь она не будет нагреваться сильно от трения в атмосфере, т.к. не быстро падает. Больше проблем от ''faceburning'', когда включаются двигатели и ракете "в лицо" идёт пламя во время торможенияне помню как точно называется лень гуглить
    • Ветерок
      Осталось дело за малым - найти человека, который "умеет считать самолеты".
    • Ветерок
      Да кто ж  его знает? У всех по-разному. Солид непредсказуем, как Жигули. Но строить надо именно так - сначала общую геометрию, потом уже отдельные детали. Я так думаю.
    • AKLion
      1. Кто умеет считать самолёты тот понимает что нужно знать.  2. Углепластиковые конусные трубки вполне передадут нужную нагрузку. 3. Нет не будет ничего цеплять на взлёте, там есть запас по тангажу.
    • Teiran
      Ну так как думаешь, использование команды "Разделить" адекватно? Она нормально сохраняет взаимосвязи (если разделять в новые детали) или чуть что солиду не понравится и прощай часы работы? Обычно солид файлы не теряет, по крайней мере я с таким не сталкивался. Как и с потерей взаимосвязей.  Касаемо работы с  незамкнутыми поверхностями
    • Ветерок
      Ну,так и делай. Можно разделить в одной детали, получив многотельную, можно разделить в разных. только поверхность разделения должна быть общая, построенная в той самой исходной детали.
    • Teiran
      Нашёл шикарный пример. Вот такой объект. Есть множество вариантов построения такой геометрии, но это сейчас не принципиально. Я вижу только один вариант построения таких деталей отдельно - создаём общую форму, дублируем деталь. В детали1 вычитаем одну часть, в детали1 - копия соотв вторую. И когда базовая форма задана уже работаем над деталями. Но даже при такой реализации можно сойти с ума подгоняя все размеры. А вот сделать объекты цельным и заняться его разделением в самом конце куда как более приятно. К тому же наиболее удобно моделировать такие объекты с помощью поверхностей, а они в свою очередь очень не любят острые углы и придание толщины не замкнутого контура в целом. Соотственно в случае создания отдельных деталей придётся городить какие-то костыли для правильной ориентации нормалей и направления вытяжки, что в свою очередь негативно сказывается на качестве и удобстве построения/редактирования.      Сложная это всё что по геометрии не состоит из примитивов как в данном примере
    • Sergei
      @Leon  SaveDRW не работает. Ничего не происходит при нажатии.
    • Sergei
      Стройте одну общую детали и потом разделите на тела или детали. И что значит сложная геометрия? Откуда она взялась? Как получилась? Импортом? Возможно тогда глюки импорта. Проблема в разделении что ли? В SW эта команда работает замечательно.
    • Teiran
      Смотрите, задача очень простая и указана в самом начале. Мне нужно построить корпус состоящий из нескольких частей (технологический процесс его изготовления - вопрос отдельный). Данный корпус задаётся очень сложной геометрией, поэтому я не могу: а) построить каждую часть (деталь) отдельно; б) построить деталь для определения общей формы и строить каждую деталь отдельно со ссылкой на основную деталь.
      Также стоит отметить что части корпуса сопрягаются на простым плоским рассечением, а куда более сложными формами.