Jump to content

Определение термодинамических свойств


Recommended Posts

Добрый день.

Разработаю термодинамически согласованное уравнение состояния для вещества в широком диапазоне температур и давлений.

Проведу валидацию на экспериментальных данных.

Проведу расчет термодинамических свойств, необходимых для проведения гидро/газодинамических, прочностных и других типов расчетов (плотность, теплоемкость, скорость звука, коэффициент объемного расширения и т.д.).

Есть опыт для следующих типов веществ:

- Газы и их смеси с учетом термического разложения и ионизации;

- Полимеры, пластики;

- Жидкость - пар с учетом двухфазной области, в т.ч. и жидкие металлы;

- Металлы и сплавы;

- Минералы и горные породы с учетом фазовых переходов.

 

 

  • Нравится 1
Link to post
Share on other sites


UnPinned posts

В качестве примера - зависимость состава и степени ионизации аргона от температуры и валидация на экспериментальных данных по ударному сжатию. Пунктирными линиями показаны ударные адиабаты для идеального газа с отношением теплоемкостей 5/3. Видно, что учет ионизации позволяет моделировать более сильное сжатие газа.

6a90307a5bc90966dcd8070c36010f78.jpeg

 

0a6b318eef285269b6b579dc186b00f1.jpeg

В качестве примера - зависимость состава и степени ионизации аргона от температуры и валидация на экспериментальных данных по ударному сжатию. Пунктирными линиями показаны ударные адиабаты для идеального газа с отношением теплоемкостей 5/3. Видно, что учет ионизации позволяет моделировать более сильное сжатие газа.

 

6a90307a5bc90966dcd8070c36010f78.png

 

0a6b318eef285269b6b579dc186b00f1.png

Link to post
Share on other sites
  • 2 weeks later...
green_fly

Еще один пример - расчет термодинамических свойств воздуха. На первом рисунке представлены ударные адиабаты, полученные в разных приближениях. Синяя линия соответствует идеальному двухатомному газу. Оранжевая линия соответствует смеси двух двухатомных газов с возбуждением колебательных степеней свободы. Красная линия соответствует детальному химическому равновесию. Красными крестами представлены табличные данные из книги Орленко "Физика взрыва и удара". На втором рисунке представлен состав воздуха в зависимости от силы ударной волны на высоте 23 км. На третьем рисунке представлено сравнение с экспериментальными данными.

48a64e0d0e5cf7f8b31ff99cdb75cf11.png

21fc5fc19f67b2e37597594f0291d844.png

5c71932a034dcd9bdb67e36b41587a5f.png

Link to post
Share on other sites
maxx2000

Интерес чисто праздный. В какой области применяются такие расчёты и как оцениваются услуги по таким расчётам? Неужели есть спрос на такой аутсорс, потому как возникает закономерный вопрос. А почему у людей которые используют такие исследования нет своих людей в штате? 

Link to post
Share on other sites
green_fly

Благодарю за проявленный интерес.

По аргону -  https://ru.wikipedia.org/wiki/Аргон

Воздух, конечно, на нашей планете встречается гораздо чаще.

Услуги оцениваются просто. Но Вам это не нужно.

Про своих людей в штатах ничего сказать не могу.

 

 

Link to post
Share on other sites
maxx2000

Очень дружелюбно.

Что такое аргон я не спрашивал. Я спросил в какой области науки и техники используют такие расчёты. 

Не желаешь дать ответ о ценообразовании услуг, так и напиши. Но не решай за меня что мне нужно ,а что нет. Как правило это интересно любому потенциальному заказчику-посетителю этой темы. (час\день\неделя\месяц\ разовое задание всё имеет цену)

Я не спрашивал про людей в штатах, а про штатную единицу в организации где могут быть востребованы такие расчёты.

Ты не русский что ли и через гугл-переводчик общаешься?

Edited by maxx2000
Link to post
Share on other sites
green_fly

Определитесь, у Вас праздный интерес или Вы потенциальный заказчик?

Link to post
Share on other sites
maxx2000

Я уже всё сказал. 

Link to post
Share on other sites

Еще один пример - расчет термодинамических свойств керамики карбида кремния в диапазоне температур до 3000К и давлений до 150 ГПа. Сравнение с экспериментальными данными.

 

Ударная адиабата в координатах Давление - Плотность -

e94a99a6eea8b275eddf536ecba7a96f.png

Ударная адиабата в координатах Давление - Скорость -
256f27e5d20c94a569b8fd210202d0d4.png

Плотность -
c330d7f90646cc99966674e3628f47a9.png

Теплоемкость -
5928c2926dcb97f1ce4d991715d081d1.png

Скорость звука -
70d80967328223036f7a53e3b97e78e3.png

Изотермический и адиабатический коэффициент сжимаемости -
93f40997fa336f2c5642693a158e64bf.png

Коэффициент объемного расширения -
b21e1544be5547090261e25f823d9473.png

 

Link to post
Share on other sites

Добрый день!

 

Насколько я знаю, в Кемкине предполагается, что вещество - идеальный газ. В нем используются полиномиальные зависимости теплоемкости только от температуры. Для жидкостей и твердых веществ в Кемкине обычно забита Cp = const.

 

Результаты для воздуха получены с помощью свободно распространяемого ПО Cantera - аналога Кемкина, предполагаю, что с Кемкином получится похоже. Но надо проверять.

 

Аргон с ионизацией - я считал по модели ионизационного равновесия Саха в достаточно большом интервале температур. Не знаю, есть ли такие полиномы для Кемкина, обычно они до 20 кК.

 

Для керамики здесь - термодинамически согласованное уравнение состояния - все термодинамические функции можно вычислить, зная температуру и плотность (или внутреннюю энергию и плотность). При T = 0 K теплоемкости, энтропия, коэффициент объемного расширения равны нулю.

 

Кинтек(Химический верстак?) не пробовал.

Link to post
Share on other sites

Еще один пример - расчет термодинамических свойств с учетом фазового перехода для кварцита.

Для каждой фазы (стишовит и альфа-кварц) используется термодинамически согласованное уравнение состояния, обеспечивающее S = 0, Cv = 0, Cp = 0 при T = 0. Граница фазового перехода определяется равенством потенциалов Гиббса фаз. На первом рисунке представлена зависимость скорости звука от удельного объема для нескольких изотерм. Стишовит (более плотная фаза) слева, альфа-кварц - справа. Видно, что скорость звука претерпевает разрыв и резко снижается в 5-10 раз при входе в двухфазную область. Такое поведение может приводить к расщеплению ударных волн и волн разрежения, распространяющихся по веществу.

fea2b10ac792bca8a9ddaca3b8ec2112.png
 

На втором рисунке представлены результаты моделирования изоэнтропического расширения в координатах скорость-давление. Начальное состояние лежит на ударной адиабате и соответствует более плотной фазе (стишовит). В ходе расширения наблюдается фазовый переход в менее плотную фазу (альфа-кварц). Наблюдается изменение наклона кривых при входе в двухфазную область, связанное с резким скачком скорости звука и коэффициента Грюнайзена. Приведено сравнение с экспериментальными данными.
a1c1245ba5e1ae1a904ecb17bd9047b1.png

Полученное уравнение состояния может быть использовано при моделировании процессов в геологических, геохимических, геологоразведочных, сейсмических задачах, а также задачах астероидной безопасности.

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Recently Browsing   0 members

    No registered users viewing this page.



×
×
  • Create New...