Перейти к публикации

Рекомендованные сообщения

Эта статья цикла, посвященного российским BIM-технологиям, рассказывает о  продуманном процессе проектирования внутренних инженерных систем в программных комплексах Model Studio CS Отопление и вентиляция, Model Studio CS Водоснабжение и канализация и Model Studio CS Трубопроводы.

 

Введение

Проектирование внутренних инженерных систем на сегодняшний день – сложный процесс, состоящий из множества составляющих. Причем для достижения максимальной его эффективности требуется обеспечить возможность совместной работы сантехнического и смежных ему отделов в едином проекте, а также параллельного проектирования, когда ошибки во многих случаях можно либо вовсе избежать, либо устранить на этапе их появления. При этом каждая мелочь проекта должна быть продумана. Малейшее отклонение от норм и правил в проектировании влечет за собой проблемы в строительстве и эксплуатации. Проектирование инженерных сетей – это искусство. Искусство делать жизнь человека безопасной и комфортной.

На сегодняшний день проектирование внутренних инженерных систем осуществляется в программных продуктах Model Studio CS Отопление и вентиляция и Model Studio CS Водоснабжение и канализация, а также, как и ранее, в Model Studio CS Трубопроводы. В них производится проектирование систем водоснабжения, канализации, отопления, вентиляции и кондиционирования воздуха как промышленных объектов, так и объектов гражданского назначения. Решения Model Studio CS полностью соответствуют требованиям, нормам и стандартам, действующим на территории Российской Федерации.

 

img94-39_1_c73033f5dc0ca52879cd6804b10a6

Рис. 1. Внутренние инженерные системы школы, выполненные в Model Studio CS

 

Комплекс Model Studio CS позволяет решать следующие основные задачи:

  • трехмерная компоновка оборудования и моделирование инженерных систем;
  • расчеты и проверка инженерных решений;
  • формирование и выпуск проектной и рабочей документации.

Все продукты Model Studio CS, входящие в комплексную систему трехмерного проектирования, используют в качестве графической платформы nanoCAD Plus 11.1, nanoCAD Plus 20.1, nanoCAD Plus 20.3, nanoCAD 21 или AutoCAD 2017-2022.

 

Работа с базой данных

Основу программного комплекса составляет встроенная в среду проектирования база данных стандартных компонентов, содержащая весь необходимый перечень объектов для моделирования внутренних сетей. Для каждого из программных продуктов (Model Studio CS Отопление и вентиляция, Model Studio CS Водоснабжение и канализация, Model Studio CS Трубопроводы) поставляется отдельная база данных в соответствии с его назначением. При необходимости отдельные базы данных для продуктов Model Studio CS могут быть объединены и развернуты как в локальном режиме на рабочем месте пользователя, так и в режиме общего доступа на сервере организации с разграничением прав использования.

 

img94-39_2_98ee83eebd75bbcdc678bc67397fd

Рис. 2. Работа с базой данных в среде проектирования

 

В базе данных в структурированном виде представлены все необходимые детали – трубопроводы, воздуховоды, фитинги, трубопроводная и вентиляционная арматура, решетки и др., а также нужное оборудование – вентиляционное, отопительное и оборудование для систем кондиционирования, водоснабжения и канализации. Таким образом, база данных, входящая в стандартную поставку, содержит весь необходимый перечень объектов для моделирования внутренних сетей. Причем все эти объекты интеллектуальные и содержат полный набор атрибутивной информации.

Следует отметить, что база данных – отнюдь не раз и навсегда предоставляемая данность: пользователю доступна возможность корректировать и пополнять ее, для чего предусмотрены специальные инструменты. Для такого пополнения БД можно использовать уже имеющиеся 3D-модели, например, от заводов-изготовителей.

Кроме того, обеспечена возможность создавать собственные базы данных оборудования, изделий и материалов, пополнять их и управлять ими. Для их администрирования вместе с программой поставляется отдельное приложение – Менеджер библиотеки стандартных компонентов.

 

Технология совместной работы

Совместная параллельная работа над 3D-проектом основана на технологии CADLib Проект, которая позволяет объединить в едином информационном пространстве 3D-модели по разным специальностям, загружать модели смежных разделов в качестве подосновы и использовать их в качестве исходных данных. Таким образом обеспечивается учет актуальной информации об объектах, относящихся к различным специальностям.

 

img94-39_3_022995437520967b7aaceaffc6934

Рис. 3. Взаимодействие со смежным строительным отделом

 

Особый функционал предусмотрен для обмена заданиями между смежными отделами с возможностью прилагать ссылки на объект модели и на элементы структуры проекта.

 

img94-39_4_bcb58038bf5aa2472f8136ee3495d

Рис. 4. Формирование задания в строительный отдел на разработку фундаментов под оборудование

 

Все участники проектного процесса работают с базой данных проекта и базами библиотек стандартных элементов, развернутыми на общем сервере. Проектировщики, работающие в Model Studio CS, подключаются к базе проекта из специализированных приложений с помощью технологии CADLib Проект в самом начале работы, что позволяет осуществлять доступ к актуальным настройкам проекта и 3D-моделям, а также выполнять быструю публикацию изменений в общую базу данных.

 

img94-39_5_e06723f5b61a2ad81131b3811e138

Рис. 5. Публикация модели приточно-вытяжной системы вентиляции в базу проекта

 

Коллективный доступ к комплексной цифровой информационной модели (ЦИМ) и управлению инженерными данными информационной модели, структурирование, хранение, визуализация информационных моделей, их проверка на предмет коллизий осуществляются в среде общих данных CADLib Модель и Архив.

 

Инструменты построения модели

Как правило, создание 3D-моделей начинается с компоновки оборудования. Основным источником для выполнения этой процедуры является база данных. Достаточно выбрать требуемое оборудование в окне базы данных и разместить его в модели с помощью ввода координат или привязок графической платформы. Каждое оборудование по умолчанию содержит необходимый перечень атрибутов для его идентификации в проекте и отображения в спецификации и прочих технических документах. В процессе компоновки оборудования также доступны все основные инструменты графической платформы.

 

img94-39_6_8367977a756e7624c145b47bbc914

Рис. 6. Размещение оборудования из базы данных

 

Создание трехмерной модели можно осуществлять непосредственно с помощью элементов из набранного миникаталога изделий. А если на момент начала проектирования такой миникаталог не создан либо поставщик оборудования деталей еще неизвестен, то есть возможность выполнять трассировку условными элементами и уже потом автоматически менять их на выбранные из миникаталога после его подключения к проекту.

Непосредственно для удобства моделирования используется специальный инструментарий, представленный на панели Трассирование.

 

img94-39_7_4e3ad01ef36992652883056f4df92

Рис. 7. Использование панели Трассирование при моделировании систем

 

Проектирование инженерных систем здания/сооружения осуществляется на основе интеллектуальных объектов. Для построения разных типов объектов моделей предусмотрены специальные средства: трубопроводы, воздуховоды, переходы, решетки, различные арматуры и крестовины. Удобный механизм с динамическими размерами обеспечивает возможность размещать элементы с точной привязкой к другим характерным точкам. Для корректировки инженерных систем применяются специальные инструменты редактирования модели – «ручки», расположенные на всех элементах трехмерной модели и позволяющие перемещать эти объекты, легко и просто расстанавливая оборудование. Кроме того, с помощью таких «ручек» можно изменять и геометрию самих элементов.

 

img94-39_8_b2573926e35fc5baf1977095613fd

Рис. 8. Специальные инструменты построения модели инженерных систем

 

Кроме специализированных команд Model Studio CS по разделению, соединению, копированию, перемещению элементов модели могут использоваться и стандартные команды графической платформы.

Отдельно хотелось бы упомянуть о диалогах и элементах ввода данных: их удобство делает работу в программе комфортной.

В Model Studio CS реализован специализированный инструмент для анализа, корректировки и выгрузки данных модели – Спецификатор. Он позволяет группировать и сортировать данные модели в соответствии с выбранным профилем специфицирования и отображать их в отдельном окне. В Спецификаторе уже имеется отдельный набор преднастроенных профилей, которые при необходимости могут быть откорректированы. Кроме того, возможны создание и настройка новых профилей специфицирования данных в соответствии с ГОСТ, СП и другими НТД предприятия. Спецификатор может использоваться как для корректировки данных модели, так и для вывода различной табличной документации (например, спецификаций).

 

img94-39_9_3714c3f8c9de8decac1f7ba225786

Рис. 9. Спецификатор – инструмент для анализа и вывода данных 3D-модели

 

Аэродинамический расчет систем вентиляции

В программе предусмотрена возможность проведения расчета систем вентиляции – аэродинамический расчет, позволяющий рассчитать расход воздуха, скорость потока, потери давления, удельные потери давления на трении и др. При этом все расчетные данные сохраняются в элементах модели и могут быть автоматически выведены в текстовый или графический формат (MS Word, MS Excel, CAD-приложение и др.).

Для автоматического выполнения расчета достаточно задать расходы воздуха на конечных элементах системы вентиляции: решетки, диффузоры, воздухораспределители и пр.

 

img94-39_10_d8561de4337ca4de3c50a58e7728

Рис. 10. Аэродинамический расчет систем вентиляции

 

Формирование выходной документации

На основе данных построенной информационной 3D-модели и заложенных в программе преднастроенных проекций обеспечивается возможность получения качественной документации разделов ОВ и ВК в соответствии с ГОСТ 21.602-2016 и ГОСТ 21.601-2011:

  • автоматическое получение планов, разрезов систем на основе преднастроенных проекций, таблицы воздухообмена помещений;

 

img94-39_11_f41118ba4eb3f5ac60b2b17cd2ed

Рис. 11. План и разрез системы вентиляции

 

  • автоматическое получение план-схем систем, установок систем, фрагментов и узлов планов и разрезов;

 

img94-39_12_8c1737614929b96b1fdc8490f28b

Рис. 12. План систем водоснабжения

 

  • автоматическое получение изометрических видов на основе преднастроенных проекций;

 

img94-39_13_6721877e299f093c6d658abd0e1b

Рис. 13. Изометрический вид системы вентиляции

 

  • автоматическое формирование спецификаций систем, таблиц с данными;

 

img94-39_14_a651ebfbfc772aaa7518d8bdafb2

Рис. 14. Спецификация систем вентиляции

  • автоматическое получение аксонометрических схем систем.

 

img94-39_15_122b9af8138c98c3e8d3a613c179

Рис. 15. Аксонометрическая схема систем водоснабжения

 

На сформированной графической документации в автоматическом режиме проставляются элементы оформления: выноски, высотные отметки, линейные размеры, позиционные обозначения.

Заложенные в программные продукты Model Studio CS шаблоны документации пользователь может редактировать в соответствии со своими предпочтениями либо использовать собственные.

 

Заключение

Model Studio CS Водоснабжение и канализация и Model Studio CS Отопление и вентиляция – это новые перспективные продукты, эффективные и простые в использовании, значительно расширяющие возможности платформ nanoCAD/AutoCAD и делающие работу инженера более комфортной и эффективной.

Программы активно развиваются. Разработчики, стремясь создавать инструменты, максимально полезные пользователям, находятся в постоянном диалоге с проектировщиками. В ближайших планах – создание функционала для построения гибких воздуховодов и трубопроводов; изоляция для прямоугольных воздуховодов; гидравлический расчет трубопроводов; наполнение баз данных новыми каталогами заводов-изготовителей; функционал по созданию сборок (узлов) из элементов систем ОВ и многое другое.

Сергей Осминов,

эксперт отдела комплексной автоматизации

в строительстве

ГК CSoft

 

 

***

Читайте другие статьи нашего цикла публикаций:

 

Изменено пользователем CSoft
Ссылка на сообщение
Поделиться на других сайтах


Присоединяйтесь к обсуждению

Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.

Гость
Ответить в тему...

×   Вставлено в виде отформатированного текста.   Вставить в виде обычного текста

  Разрешено не более 75 эмодзи.

×   Ваша ссылка была автоматически встроена.   Отобразить как ссылку

×   Ваш предыдущий контент был восстановлен.   Очистить редактор

×   Вы не можете вставить изображения напрямую. Загрузите или вставьте изображения по ссылке.

  • Сейчас на странице   0 пользователей

    Нет пользователей, просматривающих эту страницу.




  • Сообщения

    • maxx2000
    • vladimir.songin
      То есть отключаю аналоговую обратную связь от аналогового входа, и подключаю вместо энкодера? Так не делал но сомнения у меня: Вход энкодера может  быть 12 или 5 вольт. У нас 12. Два пина питание, два пина Каналы A B соответственно, один пин REF (непонятно что он означает и как работает). Остальные соеденены вместе. На какие из них подавать аналаговый вход обратной связи дефлектора.  сигналы от энкодера приходят, проверял осцилографом на самом разьёме непосредственно на входе DM02, и некое значение уже могло бы отобразиться в поле энкодера при отключенном аналаговом входе.  Если отключить аналоговый вход, то видим единичку в обоих полях, но уже писал об этом.  
    • Алексей 1977
      Кто знает подскажите как отключить этот ненужный набор букв и символов в готовой УП? Я так думаю надо редактировать постпроцессор? Заранее спасибо ( Общая длина: 130.0) ( Заготовка:) ( MIN X: -10.970) ( MIN Y: -10.970) ( MIN Z: -6.500) ( MAX X: 10.970) ( MAX Y: 10.970) ( MAX Z: 0.000) ( COORDINATE SYSTEM: Глобальная СК) ( Кончик инструмента:) (   X: -0.000) (   Y: 0.000) (   Z: 10.000) ( Рекомендованная длина: 50.000) ( Количество кромок: 4) ( Инструмент:   Концевая фреза) ( DIAMETER: 10.000) ( Безопасность:) ( Рабочие ходы инструмента: Безопасная БЕЗ зарезов) ( Подводы инструмента: Безопасная БЕЗ зарезов) ( Переходы инструмента: Безопасная БЕЗ зарезов) ( Рабочие ходы патрона: Столкновения НЕ проверялись) ( Подводы патрона: Столкновения НЕ проверялись) ( Переходы патрона: Столкновения НЕ проверялись) ( Траектория: Шаблон) ( STEPOVER: 5.000) ( ДОПУСК:0.100) ( THICKNESS:0.000) ( Статистика:) ( LENGTH: 95.318)( LIFTS: ( TIME: 0/00/05) 1) G0X0Y0 G43Z10.H13 X4.75Y-8.227 Z5. G1Z0F500 X9.5Y-5.485F1000 Y5.485 X0Y10.97 X-9.5Y5.485 Y-5.485 X0Y-10.97 X4.75Y-8.227 G0Z10.
    • gudstartup
      считывание происходит при помощи вх\вых сигналов контроллера plc 
    • gudstartup
      @Maks Horhe так все таки скиньте бэкап эмулируем ваше чпу в cncguide и посмотрим куда поедет?  можете снять видео с фиксацией координатных позиций после каждого кадра. Выложу вашу программу пусть программисты посмотрят все ли в ней ок. %O0002 G40 G17 G94 G90 G49 G80 N1 G91 G28 Z0.0 N2 G91 G28 X0.0 Y0.0 N3 G91 G28 B0.0 C0.0 N4 M03 S200 N5 G90 G0 G53 B0.0 C0.0 N6 G54 N7 X0.0 Y0.0 N8 G90 G43 H01 N9 G90 G0 X0.0 Y0.0 N10 G90 G0 Z200.0 N11 G01 Z10.0 F1500. N12 M00 N13 G00 Z200.0 N14 G40 G49 G69 N15 G00 G53 Z0.0 N16 G00 G54 B0.0 C0.0 N17 G68.2 X0.0 Y0.0 Z0.0 1135. J39.2044 K-129.2315 N18 G53.1 N19 G01 X0.0 Y0.0 F1500 N20 G90 G43 H01 N21 G90 G01 X0.0 Y0.0 F1500 N22 G90 G01 Z200. F1500 N24 M00 N25 G00 Z200. N26 G40 G49 G69 N27 G91 G28 Z0.0 N28 G28 X0.0 Y0.0 N29 G91 G28 B0.0 C0.0 N30 M5 N31 M30
    • gudstartup
      @karlf 530 считывает ключ по специальному протоколу при помощи plc и получает его серийный номер а из него определяет возможные режимы доступа. там нет драйвера а есть plc модуль или несколько эти модули написаны на питоне  надпись smartkey исчезает с экрана при запуске чпу??
    • ДОБРЯК
      Для того, чтобы получить правильные высшие) формы при виртуальном эксперименте, нужно сделать грамотную КЭ модель. От разговора на эту тему вы постоянно уклоняетесь.  То нет компьютера под рукой, сделать простейший тест, то теряете интерес. :=) Сходимости энергии деформации при расчетах статики, недостаточно для точного определения высших собственных форм и частот.  Для того, чтобы грамотно использовать метод конечных элементов, нужно сделать много-много тестов в статике, динамике и ... Одной кнопки и двух конечных элементов в 3Д программе недостаточно для определения высших собственных форм...  У вас в качестве инструмента всего два конечных элемента, шести узловая несовместная оболочка Тимошенко и десяти узловой тетраэдр. И еще контакты при решении задачи на собственные числа. Вам ли говорить про правильность определения высших собственных форм для сложных изделий... :=)    
    • vad0000
      Покажите схему с разрешением на движение
    • vad0000
      Вход, а не выход Вытащить Аналоговый вход и все, как будто туда ничего не подключено И если мы подключим сигнал к энкодеру оси Х, то он стнтет одинаковый с аналоговым входом, который не подключен?
    • Snake 60
      @waze4534  Посмотрите вверх и прочитайте текст на красной полоске...
×
×
  • Создать...