Перейти к публикации

Рекомендованные сообщения

А вы знаете, что многофункциональный модуль Simulation может решать задачи термического исследования? Он не только позволяет увидеть, как температура распространяется по деталям, но и дает возможность узнать, за какое время деталь нагревается. Обо всем этом и многом другом – в нашей статье.

 

Введение

В качестве модели взята сборка микрочипа, которая состоит из теплоотвода (снизу) и собственно чипа (сверху) – рис. 1.

scale_1200

Рис. 1

Добавив модуль Simulation в интерфейс SOLIDWORKS, создаем Новое исследование и выбираем Термический анализ. У нас загрузилось дерево исследования, в котором мы можем задавать настройки для проведения анализа (рис. 2).

 

scale_1200
Рис. 2

Сразу скажу, что если чтению учебных материалов вы предпочитаете просмотр уроков, – добро пожаловать на наш YouTube-канал «Школа SOLIDWORKS». По ссылке вы найдете видео, где мы учимся проводить термическое исследование в SOLIDWORKS Simulation и задавать различные термические нагрузки, такие как температура, тепловая мощность и конвекция.

 

 

 

Задание материала

Первое, что нам необходимо сделать, – это задать материал. Щелкаем правой кнопкой мыши по одной из деталей и нажимаем Применить/редактировать материал. В нашем примере выберем для теплоотвода алюминий, а именно Сплав 1060. Материалом для чипа пусть будет оцинкованная сталь. Потребуется указать теплопроводность – такие обязательные параметры выделяются красным цветом в открывающейся таблице (рис. 3). Скопируем «оцинкованную сталь» в папку Настроенный пользователем материал и добавим материалу теплопроводность: 50.

 

scale_1200
Рис. 3

Задание граничных условий

Для удобства задания граничных условий разнесем чип и теплоотвод друг от друга. Для этого переходим во вкладку Конфигурации (рис. 4) и, нажав правую кнопку мыши, добавляем Новый вид с разнесенными частями. Выбираем в настройках, что именно мы хотим сместить. Потянув за стрелку, выполняем смещение. И нажимаем кнопку Применить.

scale_1200
Рис. 4

Следующим шагом зададим тепловую мощность микрочипа. Щелкнем правой кнопкой мыши по кнопке Термические нагрузки и перейдем в настройки тепловой мощности. Выберем в дереве сборки весь элемент «Чип» и укажем 15 ватт (рис. 5). Тепло будет выделяться из этого элемента.

 

scale_1200
Рис. 5

 

Далее задаем набор контактов. Для этого щелкаем правой кнопкой мыши по кнопке Соединения, выбираем тип контакта Тепловое сопротивление и указываем грани, где чип и теплоотвод соприкасаются. Устанавливаем тепловое сопротивление равным 2,857е-6 К/Вт.

Теперь вновь соединим наши детали через вкладку Конфигурации и перейдем к определению конвекции этих деталей. По правой кнопке мыши выбираем Термические нагрузки, а затем открываем меню Конвекция. Выбираем грани теплоотвода, которые не касаются нагревающегося чипа.

Задаем коэффициент конвективной теплоотдачи: 200 Вт/м2К. Этот коэффициент характеризует интенсивность теплообмена между поверхностью тела и окружающей средой. Указываем массовую температуру окружающей среды, то есть температуру, которая окружает нашу модель. Для этого параметра установим 300 К (рис. 6).

 

scale_1200

Рис. 6
 

То же самое сделаем и для чипа. Выбираем внешние грани чипа, задаем коэффициент конвективной теплоотдачи равным 90 Вт/м2К, а массовую температуру окружающей среды, как и в предыдущем случае, – 300 К.

 

Результаты

Запустим исследование (рис. 7). По умолчанию сетка будет построена автоматически.

 

scale_1200
Рис. 7

Исследование завершено, можно ознакомиться с распределением температуры. Для этого выберем параметр Ограничение сечения по плоскости «справа» (рис. 8).

 

scale_1200
Рис. 8

Теперь мы видим, как температура распространяется от чипа по теплоотводу (рис. 9).

 

scale_1200
Рис. 9

Задание переходного процесса

Если мы хотим узнать, за какое время нагревается теплоотвод, нужно задать переходный процесс. Для этого скопируем наше исследование (рис. 10).

 

scale_1200
Рис. 10

Щелкнув по исследованию правой кнопкой мыши, зайдем в его свойства (рис. 11).

 

scale_1200
Рис. 11

 

Изменим тип решения на Переходный процесс. Укажем общее время (например, 100 секунд) и установим пятисекундный временной интервал (рис. 12).

 

scale_1200
Рис. 12

 

Теперь для выполнения нестационарного термического исследования требуется использовать начальную температуру. Выбираем температуру в Термических нагрузках и задаем начальную температуру для всех тел: 22 °C (рис. 13).

scale_1200
Рис. 13

Запускаем решение. Получив результат, можем посмотреть распределение температуры и ее значение в выбранный момент времени (рис. 14).

 

scale_1200
Рис. 14

Вывод

Инженерный модуль SOLIDWORKS Simulation позволяет проводить термический анализ, анализировать распространение температуры по деталям, исследовать изменение температуры с течением времени и многое другое. Если вы хотите смоделировать тепловые потоки, которые исходят из деталей, вам потребуется другой модуль: SOLIDWORKS Flow Simulation. Но о нем мы расскажем в следующий раз.

Максим Салимов,

технический специалист

по SOLIDWORKS

ГК CSoft

 

Ссылка на сообщение
Поделиться на других сайтах


UnPinned posts
13 часов назад, soklakov сказал:

@Jesse, рецензию в студию)

а чего тут рецензировать?!)
ну да, кнопочки показали в видео.. рай для новичков... но мы то понимаем, что вся тут инженерной работы тут в правильном подборе коэф-та конвективной теплоотдачи и теплового сопротивления.:smile: Последнее, наверно, сравнимо со сложностью в подборе демпфирования в гармонической анализе.
З.ы.: я бы ещё показал график, где в нестационарном анализе температура выходит на асимптоту - установившуюся температуру

Ссылка на сообщение
Поделиться на других сайтах

Присоединяйтесь к обсуждению

Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.

Гость
Ответить в тему...

×   Вставлено в виде отформатированного текста.   Вставить в виде обычного текста

  Разрешено не более 75 эмодзи.

×   Ваша ссылка была автоматически встроена.   Отобразить как ссылку

×   Ваш предыдущий контент был восстановлен.   Очистить редактор

×   Вы не можете вставить изображения напрямую. Загрузите или вставьте изображения по ссылке.

  • Сейчас на странице   0 пользователей

    Нет пользователей, просматривающих эту страницу.




  • Сообщения

    • Koels
      А вообще, я потрогал сам радиатор привода в работе, и не смотря на включённые вентиляторы на самом радиаторе, он был очень горячий. Прикрутили два здоровых вентиля к этому привода, может дело было в перегреве.
    • Anat2015
      Бывает, что виноват не сам вентилятор, а схема его контролирующая, в приводе стоит.
    • Koels
      Про все это в курсе. И про внутренний вентилятор и про радиатор. Разъём тоже в норме. Вот это очень полезно. Спасибо.
    • Anat2015
      Это не описание ошибки, а описание массива ошибок. О чем ваша конкретная ошибка говорит должно быть в мануале на станок. Если энкодеры по оси абсолютные и наверняка есть программные конечники, можно попробовать их изменить, чтобы ось оказалась в разрешенной зоне. Если есть аппаратные датчики overtravel - заблокировать их. Только все очень аккуратно, чтоб еще дальше не уехать и не сломать механику. А с какого перепугу шпиндель поехал выше точки смены инструмента? Кто то порылся в параметрах? Опять человеческий фактор?
    • Anat2015
      @Madmax70 Это клон уже обсуждаемого. Админу надо просто удалить это.
    • Maks Horhe
      Можно и так сказать) Пока я не выслал бэкап посмотрите пожалуйста, будет работать уп? Станок 3х фрезер, fanuc 0i mf plus. Именно в таком виде, в одном файле, может где ошибся, подскажите. Пока не пробовал. %  O0001(FREZA D40R5) G21 G0 G17 G40 G49 G80 G90 T1 M6 (D40) G0 G90 G54 X0. Y0. S800 M3 G43 H1 Z20. M8 G1 F500. X0. Y0. G66 P8888 X0. Y0. G67 G66 P8889 X0. Y0. G67 G66 P8890 X0. Y0. G67 M5 M9 M30 % O8888 #20=20(RFrezi) #21=63.7(DNach) #22=-121.0(Z) #23=4.5(Angle) #24=1(step Z) #25=0.25(step CIRC) #33=-1(G2-1 G3+1) (****************) G90 G1 Z1.0 #11=0 #12=0 #13=1.0 #26=ROUND[3.142*#21/#25](N) #27=#21/2-#20 #31=#27 #28=0 #29=#24*TAN[#23] #30=#29/#26 #32=360/#26 N1 #1=#11+#27*COS[#28] #2=#12+#27*SIN[#28] #3=#13+[#27-#31]/TAN[#23] IF [#3 LT #22] GOTO2 G1 X#1 Y#2 Z#3 #27=#27-#30 #28=#28+#32*#33(G2 or G3) IF [ABS[#28] GE 360] THEN #28=0 IF [#27 LE 0.1] GOTO3 GOTO1 N2 X#1 Y#2 G2 I[#11-#1] J[#12-#2] N3 G1 X#11 Y#12  (Z[#13+5]) X#11 Y#12 M99 % O8889 #20=20(RFrezi) #21=45(DNach) #22=-121(Z) #23=0.001(Angle) #24=0.5(step Z) #25=0.25(step CIRC) #33=-1(G2-1 G3+1) (****************) G90 G1 Z-113.0 #11=0 #12=0 #13=-113. #26=ROUND[3.142*#21/#25](N) #27=#21/2-#20 #31=#27 #28=0 #29=#24*TAN[#23] #30=#29/#26 #32=360/#26 N4 #1=#11+#27*COS[#28] #2=#12+#27*SIN[#28] #3=#13+[#27-#31]/TAN[#23] IF [#3 LT #22] GOTO5 G1 X#1 Y#2 Z#3 #27=#27-#30 #28=#28+#32*#33(G2 or G3) IF [ABS[#28] GE 360] THEN #28=0 IF [#27 LE 0.1] GOTO6 GOTO4 N5 X#1 Y#2 G2 I[#11-#1] J[#12-#2] N6 G1 X#11 Y#12  (Z[#13+5]) X#11 Y#12 M99 % O8890 #20=20(RFrezi) #21=44.969(DNach) #22=-195(Z) #23=-4.5(Angle) #24=0.5(step Z) #25=0.25(step CIRC) #33=-1(G2-1 G3+1) (****************) G90 G1 Z-121.0 #11=0 #12=0 #13=-121.0 #26=ROUND[3.142*#21/#25](N) #27=#21/2-#20 #31=#27 #28=0 #29=#24*TAN[#23] #30=#29/#26 #32=360/#26 N7 #1=#11+#27*COS[#28] #2=#12+#27*SIN[#28] #3=#13+[#27-#31]/TAN[#23] IF [#3 LT #22] GOTO8 G1 X#1 Y#2 Z#3 #27=#27-#30 #28=#28+#32*#33(G2 or G3) IF [ABS[#28] GE 360] THEN #28=0 IF [#27 LE 0.1] GOTO9 GOTO7 N8 X#1 Y#2 G2 I[#11-#1] J[#12-#2] N9 G1 X#11 Y#12  G1 Z[0+10] F2000. X#11 Y#12 M99 %  
    • Eduard99
      Заказ очень актуальный, прошу не стесняться задавать вопросы на почту и переходить к обсуждению. Количество может быть разделено на 2 партии: по 4шт каждого + остаток. Первая партия на 4шт. потребуется за 2 месяца, остальное можно попозже. Являюсь прямым заказчиком.
    • AlexArt
      Ну заниматься математикой на досуге полезно для прочистки мозга.
    • Madmax70
      какие они молодцы
    • mannul
      Вы уверены что у вас программа и подпрограмма выводятся? Оставьте галочку только на УП при записи:    
×
×
  • Создать...