Перейти к публикации

Проектирование и обработка элементов воздуховодов на Техтране


Рекомендованные сообщения

Автор: Владислав Кириленко

|CADMASTER|2013|

Воздуховоды – неотъемлемая часть современных вентиляционных систем. Совокупность воздуховодов может представлять собой сложнейшую сеть, состоящую из прямых участков и фасонных частей. Фасонные части, к которым относятся тройники, крестовины, отводы и переходы, предназначены, главным образом, для слияния, разделения и изменения направления воздушного потока. Такие детали вырезаются из тонколистового материала в виде разверток. О них и пойдет речь в нашей статье.

В чем специфика проектирования и обработки элементов воздуховодов? Отметим следующие особенности: детали представлены в виде разверток, на форму детали может оказывать влияние толщина листа и ширина реза, в геометрию детали включаются специфические соединительные элементы и линии гиба. Каждая конструкция вентиляционной системы требует непредсказуемой номенклатуры деталей и разнообразного сочетания диаметров труб, углов сочленения и прочих параметров. Именно поэтому получили распространение специальные программные решения, ориентированные на автоматизацию проектирования и обработки элементов воздуховодов. Одно из таких решений предлагает Техтран.

Изображение

Рис. 1. Библиотека элементов воздуховодов

Программа Техтран – Раскрой листового материала решает задачу проектирования обработки элементов воздуховодов с помощью специализированной библиотеки элементов. О механизме работы этой библиотеки мы рассказывали в статье «<noindex>Техтран: библиотека элементов – универсальное средство автоматизации проектирования обработки</noindex>» (<noindex>CADmaster #2(63) 2012 (март-апрель)</noindex>).

Изображение

Рис. 2. База данных деталей

Изображение

Рис. 3. Раскрой листа

Элементы библиотеки – параметрические модели фасонных частей воздуховодов (рис. 1). Библиотека позволяет строить контуры деталей с требуемыми характеристиками. Полученные детали включаются в базу данных (рис. 2), и из них составляются задания на раскрой. Затем детали заданий размещаются на листах, после чего производится проектирование обработки (рис. 3). Наиболее трудоемкие этапы – размещение и обработка – выполняются в автоматическом или ручном режиме.

Изображение

Рис.4. Схема построения элемента

На рис. 4 показано диалоговое окно для задания одного из элементов. На схеме представлены проекции изделия в собранном состоянии. Обозначения на изображении совпадают с названиями полей, в которых задаются соответствующие данные.

Изображение

Рис. 5 Построение развертки детали

Однако вводом исходных данных полезные качества рассматриваемого окна не исчерпываются. Здесь в графическом поле мы можем видеть в реальных пропорциях и результирующую развертку, построенную по имеющемуся набору значений (рис. 5). Это дает возможность, в частности, подбирать по месту оптимальное сочетание тех параметров, которые не являются фиксированными. Например, меняя положение продольной линии разреза цилиндрического участка, мы будем получать различную геометрию. А это в свою очередь окажет влияние на плотность размещения на листе, на прочность соединения детали по шву и т.п.

Изображение

Рис. 6. Встраивание фальцев

Соединительные элементы. Для соединения внутренних частей воздуховода, а также соединения деталей между собой могут встраиваться дополнительные элементы – фальцы, снабженные разрезами (рис. 6). Независимое друг от друга задание ширины фальцев на разных частях развертки детали позволяет учитывать их индивидуальное назначение.

Учет толщины листа. В связи с тем что в процессе гибки листа происходит деформация его внешней и внутренней поверхностей, возникает необходимость внесения в расчеты поправки по отношению к номинальным размерам. При задании диаметров существует возможность указать, на какой поверхности листа требуется выдержать данный размер. Кроме того, толщина листа влияет на окончательную геометрию детали, имеющей элементы под гибку, и также учитывается при построении развертки.

Разбиение детали на несколько фрагментов может потребоваться в связи с ограничениями размера листа или для более плотного размещения деталей, задействованных в раскрое. Другая причина разбиения детали – «узкие места» для заданной ширины реза. За счет разбиения детали на части удается получить результат и в тех случаях, когда на развертке образуется «перехлест».

Изображение

Рис. 7. Линии разметки (голубые) и линии разреза (красные)

Для большинства деталей существует возможность разбиения развертки на половины или на четверти. При этом можно выбрать линию, по которой проходит разрез. Она может совпадать с одним из ребер детали или проходить по середине выбранной грани детали (рис. 7).

Изображение

Рис. 8. Разметка под гибку (синие линии)

Разметка под гибку. Предусмотрено несколько вариантов нанесения разметки под гибку на развертку детали. Наиболее простой способ отметить линию гиба – нанести надрезы в ее начале и в конце. Другой способ окажется полезен, если оборудование имеет специальный инструмент для нанесения разметки. В деталь могут включаться линии гиба (рис. 8), по которым на этапе проектирования обработки листа будут сформированы команды перемещения соответствующего инструмента. Мы рассказали о библиотеке элементов воздуховодов в Техтране. Механизм, использованный для ее реализации, позволяет оперативно расширять набор типовых деталей, а также создавать произвольные элементы с самыми разнообразными характеристиками.

Источкик: <noindex>http://www.tehtran.com/node/232</noindex>

Ссылка на сообщение
Поделиться на других сайтах


Присоединяйтесь к обсуждению

Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.

Гость
Ответить в тему...

×   Вставлено в виде отформатированного текста.   Вставить в виде обычного текста

  Разрешено не более 75 эмодзи.

×   Ваша ссылка была автоматически встроена.   Отобразить как ссылку

×   Ваш предыдущий контент был восстановлен.   Очистить редактор

×   Вы не можете вставить изображения напрямую. Загрузите или вставьте изображения по ссылке.

  • Сейчас на странице   0 пользователей

    Нет пользователей, просматривающих эту страницу.




  • Сообщения

    • Anat2015
      Лапша на уши. Просто им не хочется настраивать, а тупо перенести параметры. За такую работу им и соответственно платить надо, по миниму.
    • maxx2000
      логика диктует что это 80% от максимального просвета, т.е. 0,8 от Кмах.
    • DuS
      поищите в справке или на ютубе граничная рамка.
    • plm-ural
      О вебинаре Уважаемые коллеги! Приглашаем Вас на вебинар, посвященный обзору возможностей программы Логос Прочность. Это высокоточный отечественный инструмент для численного решения широкого спектра задач статического и динамического упругопластического деформирования и разрушения конструкций, а также вибрационного анализа и широкополосной случайной вибрации при проектировании высокотехнологичных промышленных изделий.   Дата проведения: 24 апреля 2024 12:00 (МСК)   Регистрация на вебинар   Программа вебинара:   1.    Общая характеристика решения Логос Прочность 2.    Перечень основных решаемых задач (статические расчеты прочности, вибрационный динамический анализ, динамические расчеты во временной области) 3.    Демонстрация решения задач     Логос Прочность обладает достаточно удобным пре/постпроцессором, позволяющим корректировать и создавать геометрию, строить сетку конечных элементов, формировать необходимые условия задачи, а также производить обработку результатов. Решение разрабатывается с учетом требований отечественных предприятий для решения реальных задач в различных отраслях промышленности, включая обычные вооружения, атомную энергетику, авиастроение, транспортное и военное машиностроение и многие другие.   Вебинар будет интересен специалистам, занимающимся прочностными расчетами.   Спикер  — Сергей Хрулев, руководитель бригады прочности ГК «ПЛМ Урал».   Участие в вебинаре бесплатное. Необходима регистрация. Если по каким-либо причинам у вас не получится присоединиться к вебинару, мы обязательно отправим видеозапись при условии пройденной регистрации. Направляйте свои вопросы и пожелания на почту info@plm-ural.ru. Будем рады видеть Вас в качестве участников!   Регистрация на вебинар  
    • plm-ural
      О вебинаре Приглашаем Вас на вебинар, посвященный сравнительному анализу российской системы компьютерного моделирования литейных процессов ПолигонСофт и ПО ProCAST от ESI Group. Сравнение систем будет проведено на примере решения актуальной задачи литья лопатки для газотурбинных двигателей. Дата проведения: 25 апреля 2024 12:00 (МСК)   Регистрация на вебинар   Программа вебинара:   сравнение решаемых задач; сравнение возможностей ПО в плане подготовки расчетной модели; сравнение постановки задачи; сравнение и анализ полученных результатов и т.д.  ответы на вопросы.   Сравнение систем будет проведено на примере решения актуальной задачи литья лопатки для газотурбинных двигателей. Лопатки для двигателестроения являются одними из самых сложных в технологическом плане отливок и, в то же время, одними из самых ответственных деталей в агрегате. К ним предъявляются высокие требования к качеству (наличие дефектов и структура зерна), так как отливки работают в тяжелых эксплуатационных условиях.  Для их изготовления применяются дорогостоящие сплавы и, следовательно, получение не качественной отливки обходится предприятиям очень дорого как в материальном плане, так и в плане репутации.    Компьютерное моделирование изготовления таких отливок поможет избежать грубых ошибок в технологии на этапе разработки, снизить себестоимость изделия за счет минимизации брака и сократить время запуска технологии в производство.   Ведущий: Максим Ведерников, инженер технической поддержки ГК "ПЛМ Урал".   Участие в вебинаре бесплатное. Необходима регистрация. Если по каким-либо причинам у вас не получится присоединиться к вебинару, мы обязательно отправим видеозапись при условии пройденной регистрации. Направляйте свои вопросы и пожелания на почту info@plm-ural.ru.   Будем рады видеть Вас в качестве участников!   Регистрация на вебинар
    • ZVUM
      Здравствуйте, помогите пожалуйста с советом.. Хочу упростить работу в спецификациях убрав функцию прописывания размеров деталей. Что я хочу? А именно, сделать шаблон детали, чтобы при создании детали и моделировании чего-либо, не важно - бобышкой или гнутые, хочу чтобы в примечаниях автоматически указывались габаритные размеры "Длина" "Ширина" "Толщина", возможно ли как-то в переменных вписать определение размера и чтобы прописывались в суммарной информации? По типу 'RD1@Примечания@Деталь.moPart_c'. Спасибо!
    • Killerchik
      Эх, текстовый файл, я тогда так не умел :( Нет, измерял по одной точке и фоткал с экрана соответствующие переменные #1хх. Сейчас бы конечно применил команду dprnt или как там её, для записи результатов в файл на стойке. Единственно что, последний раз когда надо было обмерить какой-то кривой ужас, писал точки в переменные #600-#999 и потом фоткал все разом с экрана. Хотя бы УП измерения была одна единая.
    • Kosi27
      Здравствуйте! При попытке выполнить программу фрезерования на токарно-фрезерном станке возникает ошибка при моделировании #61102 "Направление шпинделя не запрограммировано". Обнаружил, что меню выбора направления обработки урезано, вместо "торец C, Бок.пов С, Торец Y, Бок.пов Y" есть только пункт "Торец, Бок.пов".   Фото меню моделирования с ошибкой  Фото меню со стойки машины Скриншот меню из sinutrain   Приводные блоки через меню TSM запускаются.  Машина Headman T65M/750, стойка Siemens 828D.  Подскажите пожалуйста, кто сталкивался с такой проблемой и как её решить? Поставщик оборудования очень тяжело идет на контакт, а инструменты неосевой обработки необходимы как никогда. HELP:(
    • Говорящий Огурец
      Лучше, чем это сделал OpenMind, у меня вряд ли получится :) Полно инфы как в текстовом формате, так и видосов на Трубе
    • ak762
      @Killerchik а как вы точки касания в текстовый файл записывали, руками с экрана или использовали станочную команду?
×
×
  • Создать...